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Abstract— Approximation computing, a novel paradigm for nanoscale technologies, tackles 

error tolerance in the computational process to improve performance while minimizing power 

consumption. Digital circuit design benefits greatly from the usage of majority logic (ML), 

whose fundamental building block, the 3-input majority voter (MV), is applicable to a wide 

range of developing nanotechnologies. For the suggested multipliers, approximate 

compressors and a reduction circuits with so-called complement bits are employed; the same 

applied to the proposed adders. A complement bit selection approach is also given. An effect 

factor is developed and assessed to explore the relative value of different complement bits 

dependent on the multiplier size. The suggested designs are assessed using hardware criteria 

(such gate complexity and delay) and error metrics. When compared to other ML-based 

designs published in the literature, the recommended designs turn out to perform better. The 

suggested designs are backed by case studies of error-resilient applications. 
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1. Introduction 

Power dissipation is increasingly 

becoming a challenge for advanced 

integrated circuit design; although 

emerging nanoscale technologies have 

been proposed to replace CMOS at the end 

of Moore’s law, the issue of power 

consumption remains unabated, because 

integration density of these 

nanoelectronics devices continues to 

increase at a high rate. Approximate 

computing is a promising technique to 

reduce power consumption and improve 

performance of circuits and systems by 

allowing computational errors in error-

tolerant applications, such as multimedia 

signal processing, machine learning and 

pattern recognition [1-2]. Approximate 

computer arithmetic circuits based on 

CMOS technology have been extensively 

studied. Designs of approximate adders, 

multipliers and dividers for both fixedpoint 

and floating-point formats have been 

proposed [3-7]. Error metrics such as the 

mean error distance (MED), the 

normalized MED (NMED) and the relative 

MED (RMED) [8] have been proposed to 

analyze the errors introduced in the 

operations of approximate arithmetic 

circuits.  

However, the approximate designs of 

CMOS circuits cannot be immediately 

applied to many emerging technologies 

such as QCA [9-10], nanomagnetic 

logic[11], and spinwave devices [12] due 

to the very different underlying logic 
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structure of these devices. Emerging 

devices rely on majority logic (ml) which 

is a substantially different framework from 

conventional boolean logic. The majority 

gate performs a multi-input logic operation 

and is shown in fig. 1;  

F = M(A, B, C) = AB + BC + AC  (1) 

 
Fig. 1. Majority gate (3-input voter). 

Research on the design of ml approximate 

circuits has only recently been pursued; in 

[3] the authors proposed a one-bit full 

adder circuit. In this paper, we propose a 

few ml-based approximate full adders; 

one-bit as well as multi-bit approximate 

adders are considered. Qca technology is 

used as a case study to show the validity of 

the proposed designs. Hardware evaluation 

and error analysis are also provided. 

2. Background 

2.1. Quantum-dot Cellular Automata  

QCA makes use of the polarization state of 

cells to encode binary information and 

Coulombic force interactions between 

cells to achieve circuit functionality; these 

features make this technology substantially 

different from CMOS. As shown in Fig. 

2a, a QCA cell consists in its simplest 

form of four quantum dots and two 

electrons that can tunnel between them. 

Due to Coulombic repulsion, electrons are 

forced to occupy the opposite diagonal 

vertices (dots). This forms two different 

polarization states (i.e., -1, +1) for each 

cell, thus representing logic values of 0 

and 1. QCA requires a clocking scheme 

with four different operational phases, i.e. 

Switch, Hold, Release, and Relax; each 

adjacent so-called zone is shifted in phase 

by 90 degrees to control the flow of 

information. For a majority gate in QCA, 

which can be seen in Fig. 2b, there is a 

0.25 clock delay in each clocking zone. As 

another basic gate in QCA, an inverter is 

shown in Fig. 2c. More information on the 

clocking scheme and QCA technology can 

be found in [9-10] 

A. ML based One-Bit Exact and 

Approximate Full Adders  

Fig. 3 shows a one-bit accurate full adder 

based on ML; it consists of 3 majority 

gates and 2 inverters [14]. The inputs to 

the one-bit adder are given by A, B, C 

while S and C are the outputs. The outputs 

Cand S are expressed as follows: 

 

 
Fig. 2. QCA basic elements: (a) QCA cell, 

(b) QCA majority gate (voter), and (c) 

QCA inverter 

 
Fig. 3. One-bit accurate full adder: (a) 

schematic of accurate adder, (b) layout of 

accurate adder in QCA [14] 

Labrado et al have proposed a one-bit 

approximate full adder (AFA1) in [3], 

whose schematic and layout are shown in 

Fig. 4. AFA1produces the output S as the 

complement of C but introduces 2 errors 

(among the 8 input combinations) when 

computing the output S, (as shown in 

Table I).  
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Fig. 4. One-bit approximate full adder: (a) 

schematic of AFA1, (b) layout of AFA1 in 

QCA [3]. 

The circled entries in the truth table denote 

the instances in which the outputs of the 

approximate full adder differ from the 

accurate full adder. The equations for the 

carry out and the sum are as follows: 

 
B. Error Metrics for Approximate 

Circuits 

As approximate computing introduces 

errors, error metrics are required to 

evaluate the accuracy of approximate 

circuits. In this paper, we evaluate 

approximate designs using the MED and 

the NMED. The MED is defined as the 

average of the Error Distance (ED) which 

is the absolute difference between the 

approximate and the accurate results 

across all possible inputs. The NMED is 

the normalized MED. The definitions of 

ED, MED and NMED are as follows: 

where X, Y, n and MAX denote the 

accurate result, the approximate result, the 

counts of all possible inputs and the 

maximum value of the result, respectively. 

3. PROPOSED ONE-BIT 

APPROXIMATE FULL ADDER 

In this section, a one-bit approximate full 

adder is proposed, which is presented and 

compared with one-bit accurate full adder 

and an existing one-bit approximate full 

adder.  

A. Proposed One-bit Approximate Full 

Adder  

Inspired by [3], we propose a new one-bit 

approximate full adder, namely, AFA2. 

Consider the truth table in Table I, C is 

nearly the same as C except in two of the 8 

input combinations. Therefore, C can be 

approximately considered as C to save a 

majority gate compared with the one-bit 

accurate full adder when computing the 

carry out of a one-bit full adder)  

B. Comparison and Discussion  

A comparison in terms of number of 

majority gates (MV), number of inverters 

(INV), MED, NMED, delay (D) and area 

(A) between the accurate adder [14], 

AFA1 [3] and the proposed approximate 

full adder AFA2 is reported in Table II. 

Compared with the accurate adder [14], 

AFA2 saves 2 majority gates, 1 inverter 

and 0.25 clock cycles of delay and 

improves the area of the design by up to 

72%. Moreover, AFA2 has a smaller area 

than AFA1[3] in QCA. 

 
Fig. 5. Proposed one-bit approximate full 

adder: (a) schematic of AFA2, (b) layout 

of AFA2 in QCA. 

Table1: Truth Table of 1-bit MLAFAs 

 
Table 2: Comparison of 1-bit MLAFAs 

 
3.1 Proposed multi-bit approximate 

adders  
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In this section, multi-bit approximate full 

adders are proposed by merging the 

proposed and the existing one-bit 

approximate full adders. Both the 

corresponding hardware designs and error 

metrics are evaluated.  

A. Proposed two-bit approximate 

adders: The inputs to the two-bit adder are 

given by a = aa, b = bb, c,while s = ss, and 

care the outputs. By cascading two one-bit 

approximate full adders (AFA1 and 

AFA2), four different combinations are 

possible for the two-bit approximate full 

adder; they are shown in fig.6. AFA1 

cascaded with AFA1 results in the two-bit 

AFA11 design. Similarly, AFA2 cascaded 

with AFA2 results in AFA22 design. 

AFA12 consists of AFA1 and AFA2, in 

which AFA1 is used to compute the LSB; 

the opposite is applicable to AFA21. The 

layouts of these two-bit approximate QCA 

adders are shown in fig. 7. 

 
Fig. 6. Schematics of proposed 2-bit 

approximate full adders: (a) AFA11, (b) 

AFA22, (c) AFA12 and (d) AFA21. 

 
Fig. 7. Layouts of proposed 2-bit 

approximate full adders in qca:(a) AFA11, 

(b) AFA22, (c) AFA12 and (d) AFA21. 

The proposed two-bit approximate adders 

introduce errors for 14 of the 32 input 

combinations; the MED and NMED of the 

four approximate adders are provided in 

table iii. The error results show that by 

cascading two of the same type of one-bit 

approximate full adder, the med and 

NMED are larger than cascading two 

different types of one-bit approximate full 

adder; however, AFA22 incurs in the 

smallest area and has less delay than 

AFA12. Considering the number of gates 

required in an implementation, AFA12 

requires one less inverter than AFA21. In 

terms of the delay, AFA21 needs 0.25 less 

clocking zones than AFA12. 

 

Table 3: Comparison of 2-bit MLAFAs 

 
Fig. 8 shows the comparison results by 

considering both the area-delay product 

and the NMED; AFA21 is the best design 

as it is the closest to the origin. Generally, 

AFA12 and AFA21 (with mixed types of 

one-bit approximate full adders) show 

better performance compared with those 

with only a single type of approximate full 

adders.  

 
Fig. 8. Evaluation of proposed 2-bit 

approximate full adders (NMED vs 

delayarea product). 

B. Proposed four-bit approximate 

adders  

Similar to the two-bit approximate full 

adder, we can design a four-bit 

approximate full adder by cascading two 

two-bit approximate full adders. AFA12 
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and AFA21 are selected from these two 

two-bit approximate full adders as these 

designs show better overall performance 

than the other two schemes. These four 

combinations are shown in fig. 9, while 

their implementations in QCA are shown 

in fig. 10. Table iv shows that the 

proposed designs require fewer gates than 

an accurate full adder, but at the cost of a 

reduced accuracy. An improvement of up 

to 50% in delay and up to 67% in area is 

achieved. Although AFA1221 has 

advantages in terms of the reduced number 

of gates and delay, its med/NMED is the 

largest. AFA2121 and AFA2112 have the 

same med/NMED, but AFA2121 has less 

delay. Compared with AFA2112, 

AFA1212 requires one less inverter with a 

reduction in med. 

 
Fig. 9. Schematics of proposed 4-bit 

approximate full adders: (a) AFA1212, (b) 

AFA2121, (c) AFA2112 and (d) 

AFA1221. 

 
Fig. 10. Layouts of proposed 4-bit 

approximate full adders in qca: (a) 

AFA1212, (b) AFA2121, (c) AFA2112 

and (d) AFA1221. 

Fig. 11 shows that AFA2121 is the best 

design. The NMED for AFA1221 is rather 

large and the values for NMED of 

AFA1212, AFA2121, AFA2112 are very 

close, but AFA2112 and AFA1212 require 

more delay. For four-bit designs, the 

schemes in which two of the same type of 

the proposed two-bit approximate full 

adders are cascaded have better 

performance than cascading different types 

of approximate full adders. 

Table 4: Comparison of 4-bit MLAFAs 

 

 
Fig. 9. Evaluation of proposed 4-bit 

approximate full adders (NMED vs delay 

area product). 

C. Proposed eight-bit approximate 

adders  

consider an eight-bit adder with inputs, we 

have designed eight-bit approximate 

adders by cascading two four-bit 

approximate adders by using AFA1212 

and AFA2121, as they show better overall 

performance than the other two designs. 

The proposed eight-bit approximate adders 

are shown in fig. 12; their implementations 

in qca are shown in fig. 13. The 

comparison results are detailed in table v. 

The proposed designs significantly reduce 

the number of gates and delay but at the 

cost of a decrease in accuracy. In terms of 

gates, AFA1212-1212 and AFA1212-2121 

require one less inverter than the other 

adders; AFA2121-2121 and AFA1212-

2121 incur less delay than the other 

adders. 
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Fig. 12. Schematics of proposed 8-bit 

approximate full adders: (a) AFA1212- 

1212, (b) AFA2121-2121, (c) AFA2121-

1212 and (d) AFA1212-2121. 

 
Fig. 13. Layouts of proposed 8-bit 

approximate full adders in QCA: (a) 

AFA1212-1212, (b) AFA2121-2121, (c) 

AFA2121-1212 and (d) AFA1212- 2121.  

Table 5: Comparison of 8-bit MLAFAs 

 

 

Fig. 14. Evaluation of proposed 8-bit 

approximate full adders (NMED vs delay 

area product). 

3.2 ML based approximate multipliers  

The designs of ml based approximate 

multipliers are studied in this section based 

on 2 × 2 MLAMs. The so-called 

complement bit is introduced through a 

selection scheme to compensate errors. 

Consider fig. 7 and the proposed design 

flow of n × n MLAMs. The multiplicand 

an−1an−2an−3an−4 · · · a3a2a1a0 and the 

multiplier bn−1bn−2bn−3bn−4 · · · 

b3b2b1b0 are first divided into n/2 

modules (each of 2 bits as a unit); then, 

these modules are substituted into the 

expression to calculate the partial product, 

while at the same time, selectively adding 

the compensation bits as per the size of the 

multiplier. Next, for efficient compression, 

a partial product reduction (PPR) circuitry 

which uses exact or approximate 

compression is employed. This depends on 

the distribution of the generated partial 

products (PPS) and the compensation bits, 

such that the pp of two rows (or a carry in 

the lowest order) can be obtained. Finally, 

the final product can be calculated by the 

final exact adder. 

A. 2×2-MLAM 

By mapping the 2 × 2 am design into ML, 

out1 requires three majority gates, which is 

two more than out0 and out2 

 
Therefore, this should be further 

improved; furthermore, with an increase of 

design scale, errors will increase 

substantially, so unacceptable in most 

cases. Taking these issues into account, 

one is employed as the out1 of the 2 × 2 

MLAM, the other is used as a 

compensation bit. In this paper, we just 

take one case into consideration. The other 

case follows the same rules. 
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Fig. 15. Proposed design flow of n × n 

MLAMs. 

By considering the 2 × 2 MLAM as a 

module, larger multipliers can be 

constructed by dividing the operands into 

several units, where 4 represents a 

complement bit. Fig. 15and Figure 

16shows the operations of the 4 × 4 and 8 

× 8 MLAMs with all complement bits that 

need to be further reduced. 

 

Fig. 16. PPG and complement bit 

generation of MLAMs: (a) 4×4 MLAM, 

and (b) 8 × 8 MLAM. 

4. Simulation results 

The proposed QCA approximate full 

adders are designed and simulated by 

using the XILIN ISE tool for the one-bit 

case. XILIN ISE is a QCA layout and 

simulation tool developed at the University 

of Calgary. The design and simulation is 

as follows. First, we generate the layout of 

the proposed one-bit approximate full 

adder. Then, we design multi-bit adders 

using the one-bit layout. 

 
Fig 4.1 AFA 11 

 
Fig 4.2AFA 22 

 
Fig 4.3 AFA 21 

 
Fig 4.4 AFA 12 

 
Fig 4.5 AFA 1212 
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Fig 4.6AFA 1221 

 
Fig 4.7AFA 2112 

 
Fig 4.8AFA12122121 

5. Conclusion  

This study has covered the design, 

analysis, and evaluation of approximate 

multipliers and adders using majority 

logic. ML-based 1-bit, 2-bit, and multi-bit 

AFAs have been proposed; these designs 

have a minor loss in accuracy but a lower 

circuit complexity and time than their 

precise equivalents. A number of 

approximation techniques (such as the 

suggested MLACs and approximate PPR 

circuits) have been combined with the so-

called complement bits to create ML based 

multi-bit AMs: A comprehensive analysis 

has been carried out to determine the 

complement bits based on multiplier size; 

multiple MLACs, derived from MLAFAs 

or K-Map simplification, have been 

suggested and used in the approximate 

PPR circuit design for 8 × 8 MLAMs; an 

influence factor has been established to 

evaluate the significance of different 

complement bits. 
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