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ABSTRACT:   

The direction of supervised machine learning and its algorithm is being followed in the prediction of 

the mechanical properties of concrete. In this study, an ensemble random forest (RF) and gene 

expression programming (GEP) technique are used to estimate the compressive strength of high 

strength concrete. The variables include the quantity of superplasticizer, water, and the ratio of coarse 

to fine aggregate. Model performance is further evaluated via the use of statistical techniques such as 

RSE, MAE, and RRMSE. The RF ensemble model works better than other models because it uses a 

weak base learner decision tree and gives a strong estimate of coefficient R2 = 0.96 with fewer errors. 

The GEP method demonstrates a satisfactory response between actual and anticipated values with an 

empirical connection. The RF and GEP models additionally undergo an external statistical review in 

order to verify the variables using data points. Artificial neural networks (ANNs) and decision trees 

(DT) are also used on a specific data sample, and comparisons with the aforementioned models are 

made. An essential parameter is produced by applying Python permutation properties to the variables. 

The machine learning algorithm establishes a substantial relationship between the objectives and 

predictions with fewer statistical observations, demonstrating the accuracy of the overall model. 
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Introduction 

Due to its higher performance, high strength concrete (HSC) is becoming increasingly popular. Due to 

its very high strength and endurance, HSC has been recognised as excellent [1-4]. Because of its 

stronger strength than traditional concrete, which has been seen, its application in the current building 

sector has significantly expanded [5]. The penetration of its usage within the building business is due 

to a new technique that produces homogeneous and thick concrete as well as strengthens the strength 

characteristics [5,6]. It has frequently been utilised in columns, bridges, and steel tubes filled with 

concrete. The American Concrete Institute (ACI) claims that "HSC is the one that possesses a specific 

requirement for its working which cannot be achieved by conventional concrete" [7]. Various 

approaches for the mix design of HSC were put forth by numerous researchers. To get the desired 

strength, each mix design technique needs a certain set of experimental trials. It is an undeniable fact 

that experimental work takes a lot of time and costs a lot of money. The validity of the experimental 

work carried out over the world is also questioned due to inexperienced workers and machine mistake.  
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  Machine learning ideas have been effectively applied in a variety of sectors in recent years for 

the predictions of various attributes. To get around lengthy experimental methods, the civil engineering 

construction sector has also embraced these strategies. The multivariate adaptive regression spline 

(MARS) [15,16], the genetic engineering programming (GEP) [17–20], the support vector machine 

(SVM) [21,22], the artificial neural networks (ANN) [23–25], the decision tree (DT), the adaptive 

boost algorithm (ABA), and the adaptive neuro-fuzzy interference (ANFIS) are a few examples of 

these methods. Using gene expression programming, Javed et al. [18] forecast the axial behaviour of 

a concrete-filled steel tube (CFST) with 227 data points. The author successfully establishes a solid 

association between experimental axial capacity and prediction [18].  

By doing an experimental and literature-based investigation, Javed et al. are able to estimate the 

compressive strength of sugar cane bagasse ash concrete. The remaining data were collected from 

published literature, and experimental work was performed to validate the model. The GEP algorithm 

was utilised by the author to produce a satisfactory model between the goal values. In order to forecast 

the compressive strength of concrete-filled steel columns with recycled aggregate (RACFSTC), Nour 

et al. employed the GEP method. In the modelling portion of the RACFSTC column, the author 

employed 97 data points and found a strong association. By utilising a random forest technique based 

on beetle antennae search, Junfei et al. were able to estimate the compressive strength of self-

compacting concrete. The author's persistently high correlation (R2= 0.97) with the experimental 

findings. In order to forecast the compressive strength of high-performance concrete, Qinghua et al. 

used a random forest technique. Similar to this, Sun et al. employed 138 data samples from published 

literature and an evolving random forest algorithm to forecast the compressive strength of rubberized 

concrete. This cutting-edge strategy performed better with an R2= 0.96 high coefficient connection. 

For estimating the mechanical strength characteristics of high-performance concrete and recycled 

aggregate concrete, ANN and other models have been utilised. Pala et al. investigated how silica and 

fly ash affected concrete's compressive strength. To examine the effects of various w/c ratios, 

percentages of silica, and fly ash on the performance of concrete, a thorough experiment was 

conducted. Additionally, ANN was used to illustrate the impact on the concrete strength parameters. A 

machine learning system based on GEP was utilised by Azim et al. to forecast the compressive arch 

action of a reinforced concrete structure. The author discovered that GEP works well for making 

predictions. 

This study used ensemble random forest (RF) and gene expression programming (GEP) to assess 

the compressive strength performance of a high strength concrete (HSC). The data points gathered for 

the model were from papers that have been published, and they are given in Table S1. The compressive 

strength of HSC is predicted using GENEX protool software and Python-based Anaconda Spyder 

programming. Cement, water, the ratio of coarse to fine aggregates, superplasticizer, and compressive 

strength are the model's inputs and outputs, respectively. To display the connection between the input 

and output parameters, hex contour graphs are created. Permutation feature importance (PFI) and 

sensitivity analysis (SA) are used to determine the relative weights of each variable in relation to the 

desired output parameters. Additionally, statistical measurements are also included in the model 

evaluation process. 

 

2. Research Methodology 

2.1. Random Forest Regression 

 Breiman's 2001 proposal of random forest regression is seen as an advancement over 

classification regression. The quickness and adaptability with which the connection between input and 

output functions may be created are among RF's key characteristics. Additionally, RF manages 

enormous datasets more effectively than other machine learning methods. RF has been utilised in a 

variety of industries, including banking to forecast client behaviour, the pharmaceutical and medical 

industries, e-commerce, and the direction of stock market values. The major steps of the RF technique 

are as follows: 

1. Collection of trained regression trees using training set. 

2. Calculating average of the individual regression tree output. 
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3. Cross-validation of the predicted data using validation set. 

 The original training set is replaced with a fresh training set made up of bootstrap samples. Some 

of the sample points are removed and replaced with existing sample points during the execution of this 

phase. Out-of-bag samples are a different set of samples that are gathered from the deleted sample 

sites. 2/3 of the sample points are then used to estimate the regression function. In this instance, the 

model is validated using samples that were taken directly from the bag. Up till the requisite precision 

is attained, the process is repeated several times. The distinguishing feature of RFR is its built-in 

mechanism for removing the points for out-of-bag samples and using them for validation purposes. At 

the conclusion, each expression tree's total error is computed, demonstrating its effectiveness.  

   

3. Experimental Database Representation 

3.1. Dataset Used in Modeling Aspect 

 The number of parameters utilised and the data sample are used to evaluate the model. The 

published literature yielded a total of 357 datasets (see Table S1). To create a numerically based 

empirical relation for HSC, these points were taught, validated, and tested through modelling. To 

reduce the overfitting of data in machine learning methods, this is done. To determine the adamant 

correlation coefficient, the data were split into 70/15/15 groups. Behnood et al. use information from 

published literature to forecast the mechanical characteristics of concrete. For the training (70%), 

validation (15%), and testing (15%) sets, the samples were allocated at random. Similar to how the 

data was distributed previously, Getahun et al. predicted the mechanical characteristics of concrete.   

3.2. Programming-Based Presentation of Datasets 

 Python version 3.7 programming on the anaconda platform has been used to show how different 

input factors affect the mechanical strength of HSC. The number of factors employed in experimental 

work affects the compressive strength of concrete. In order to predict the compressive strength of HSC, 

the following variables were used: cement content (Type 1), water, superplasticizer (polycarboxylate), 

and fine and coarse aggregate (20 mm). Python was used in Jupiter notebook to visualise the effects 

of various input parameters, as illustrated in Figure 1. 

 

  
Figure 1. Hex contour graph of input parameters; (a) Cement; (b) Coarse aggregate; (c) Fine 

aggregate; (d) Super plasticizer; (e) Water; (f) Compressive strength. 

 Python is an efficient machine learning approach that enables users to have a deep understanding 

of the parameters that alter the functioning of the model. Python uses the seaborn command to plot the 

correlation among the desired parameters. Figure 1 represents the quantities that have a pronounced 

influence on the mechanical properties of HSC. The darkish region shows the optimal/maximum 

concentration of variables as depicted in Figure 1. 
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Table 1. Statistical description of all data points used in model (Kg/m3). 
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  Like other genetic algorithm models, the GEP-based model is greatly impacted by the input 

parameters (variables) that it is built on. The generalising fitness of these models was significantly 

influenced by these factors.  The model time is a crucial factor to consider when evaluating the model's 

efficacy. To guarantee that the generalised model always evolved in proper time, care must be taken 

while choosing the sets that regulate the model time. To get the highest correlation, these parameters 

are chosen using the hit-and-trial approach. In modelling, the Root Mean Squared Error (RMSE) was 

used. Additionally, tree-like architectural components are used to indicate how well the GEP-based 

model performs. 

 

5. Results and Discussion 

5.1. Random Forest Model Analysis 

 As shown in Figure 2, Random Forest is an ensemble modelling approach that utilises a weak 

learner to provide the greatest performance. These supervised learning algorithms provide unwavering 

accuracy in terms of correlation. For maximum coefficient determination, the model is split into twenty 

submodels, as shown in Figure 2a. It is obvious that the sub-model offers a strong link and is equal to 

10 outbursts. It results from the employment of a decision tree, a weak learner, in the ensembling 

method. Additionally, as shown in Figures 2b,c, the model provides a strong correlation (R2 = 0.96) 

between experimental and predicted values as well as positive validation findings. Additionally, as 

seen in Figure 2d, the model's performance exhibits reduced inaccuracy. 

 
(a)  (b) 

 
(c)  (d) 
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Figure 2. Model evaluation (a) Ensemble model with 20 submodels; (b) validation based on RF; (c) 

testing based on RF; (d) error distribution of the testing set. 

 Random forest is used to apply statistical analytical checks on the model performance. This 

indirect approach demonstrates model performance. The RMSE, MAE, RSE, and RRMSE are 

employed in these statistical studies to check the model's mistakes, as indicated in Table 5. The RF 

model exhibits reduced error in the prediction area since it is an ensemble one model. 

Table 5. Random forest (RF) statistical analysis. 

Model RMSE  MAE R2  

Fc 

Validation Testing Validation

 Testing 

Validation Testing 

1.22 1.42  0.475 0.495 0.967 0.041 

RRMSE  RSE P(row)  

Validation Testing Validation

 Testing 

Validation Testing 

0.0186 0.021  0.072 0.053 0.024 0.025 

  

5.2. GEP Model Evaluation 

 Figure 3 illustrates model assessment and how it represents the difference between observed and 

anticipated values. An efficient method to evaluate the strength parameters of HSC is to use a machine 

learning algorithm based on GEP. Regression analysis is typically used in machine learning to evaluate 

models. Regression analysis demonstrates that any model with a value near to one is unquestionably 

accurate, as shown in Figure 3b. It demonstrates that the testing and validation sets' regression line is 

very nearly 1. Regression analysis of the validation and test sets is shown in Figures 3a and 3b with 

the coefficient of determination R2. This result exceeds 0.8 and represents the model's accuracy as 

0.91 and 0.90 for the testing (see Figure 3a) and validation (see Figure 4b) sets, respectively. To 

demonstrate the accuracy of the data, the collected data from published literature were additionally 

normalised within the range of zero and one, as shown in Figure 3c. 

 
(a)  (b) 

 
(c) 
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Figure 3. Model evaluation (a) Validation results of data based on GEP; (b) testing results of data; (c) 

normalized range of data. 

 The model's performance is assessed statistically using the MAE, RRMSE, RSE, and RMSE, as 

done similarly in a random forest model, as shown in Table 6. The model performs better when the 

coefficient is larger and the error is lower. Most mistakes have an R2 value larger than 0.8 and are 

located below 5 MPa. As a result, it shows how accurate the finished model is. The model's 

performance is additionally assessed by additional analysis, which includes calculating the standard 

deviation (SD) and covariance (COV). The results show that the SD and COV values are 0.16 and 

0.059, respectively. 

Table 6. Statistical calculations of the proposed model. 

 
 By measuring the discrepancy between the testing set's actual objectives and anticipated values, 

as seen in Figure 5, the accuracy and performance of the machine learning-based model are assessed. 

As can be seen, the model accurately predicted a result that was close to or equal to the experimental 

values. Additionally, according to the error distribution of the testing set, the greatest error is 7.47 MPa, 

with 86% of the data sample falling below 5 MPa and 13.88% falling between 5 MPa and 8 MPa. As 

a result, the GEP-based model provides both the empirical equation indicated in Equation (9), as well 

as excellent accuracy in terms of correlation. By applying this equation, users will be able to determine 

the compressive strength of concrete. 

 
Figure 4. Distribution of data with error range. 

 

6. Statistical Analysis Checks on RF and GEP Model 

 Any model's accuracy is reliant on data points. The accuracy of the overall model will increase as 

the points rise. Based on the ratio of input data samples to its parameters, Frank et al. provide an 

optimum solution. For the model to function well, this ratio has to be three or higher. In this 

investigation, 357 data samples with the four previously indicated variables and a ratio of 89.25 are 

used. This ratio value is noticeably greater, demonstrating the model's accuracy. Similar methods were 

employed by Farjad et al. to validate the model and provide conclusive outcomes with a ratio higher 

than 3. Researchers propose many methods for the external statistical validation of a model. The slope 

of the regression line's (k' or k) slope was used by Golbraikh et al. to validate their model. This line 

compares experimental and anticipated data to see how accurate the model is. Any value higher than 

0.8 or close to 1 will result in the model performing obstinately. The results of all these external audits 

are summarised in Table 8. 
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Table 8. Statistical analysis of RF and GEP models from external validation. 

 
 

7. Comparison of Models with ANN and Decision Tree 

 Figure 5 compares the ensemble RF and GEP technique with the ANN and DT supervised 

machine learning algorithms. These methods are separate algorithms, much as GEP. To produce an 

adamantly high connection, RF is an ensemble model that combines a base learner as an individual 

learner and models it with bagging approach. Remember that all models are built using Python 

(Anaconda). Figure 5 displays the model comparison. When the model's R2value is 0.96 and its error 

distribution is displayed in Figures 5a and 5b, the RF explosion in the model's performance can be 

noticed. Individual models ANN, DT, and GEP, with R2 values of 0.89, 0.90, and 0.90, respectively, 

demonstrate good responsiveness. The error distribution of a decision tree with a maximum error under 

10 MPa is shown in Figure 5d. However, the maximum error is listed as 18.19 MPa. As illustrated in 

Figures 5f,h, ANN and GEP models also exhibit a similar pattern, with maximum error values of 11.80 

MPa and 7.48 MPa, respectively. Additionally, researchers predicted the mechanical characteristics of 

high strength concrete using several algorithm-based machine learning approaches. Ahmed et al. 

predicted the mechanical characteristics of HSC (slump and compressive strength) using an ANN 

method. The author used ANN to analyse the model, and the results showed a significant connection 

between slump and compressive of around 0.99. Using RF and M5P methods, Singh et al. predicted 

the mechanical characteristics of HSC and found a significant connection. 

 
(a)  (b) 

 
(c)  (d) 
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(e)  (f) 

Figure 5. Cont. 

 
(g)  (h) 

Figure 5. Model evaluation with errors (a) RF regression analysis; (b) error distribution based on the 

RF model; (c) decision tree (DT) regression analysis; (d) error distribution based on DT; (e) artificial 

neural network (ANN) regression analysis; (f) error distribution based on ANN; (g) GEP regression 

analysis; (h) error distribution based on GEP. 

 

8. Permutation Feature Analysis (PFA) 

The most important factors influencing the compressive strength of HSC are identified using 

permutation feature analysis (PFA). PFA is carried through using a Python programming extension. 

The PFA findings are displayed in Figure 6. The findings indicate that all the factors taken into account 

in this study have a significant impact on the compressive strength characteristic of HSC. 

Superplastizer, however, has a greater impact than the other factors.

 
 (a)  (b)  

Figure 6. Permutation analysis of input variables (a) model base (b) contribution of input variables. 

 

9. CONCLUSIONS 

 The greatest results come from applying supervised machine learning to forecast the mechanical 

properties of concrete. Rather than establishing an experimental setup, this will let the user predict the 

required attributes. The following traits are inferred using the machine learning technique. 

1. An ensemble method called random forest routinely performs better than predicted and observed 

values. It is the outcome of integrating a weak learner as the base learner in the decision tree, which 

establishes the coefficient. R2 is equal to 0.96. 

2. Unlike an ensemble approach, GEP is a stand-alone model. It offers a strong link with the empirical 

relationship. One may manually compute a forecast for the mechanical characteristics of high 

strength concrete using this connection. 

3. The RF and GEP models are contrasted using ANN and DT. R2 = 0.96 indicates a persistent link, 

but RF explodes. The GEP model's R2 is 0.90. Results for the ANN and DT models are 0.90 and 
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0.89, respectively. Furthermore, RF generates less errors than other standalone algorithms. That's 

due of the bagging mechanism used by RF. 

4. One important HSC parameter is permutation characteristics. Consequently, all of the variables 

have been taken into account while identifying the critical variables in experimental study. 
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