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Abstract—Autonomous vehicle networks are expected to 

improve traffic flow and safety while also enhancing the driving 
experience for drivers. As a result, Intelligent Transportation 

Systems (ITS) cannot fully take use of the existing communication, 

storage, and computing capabilities of linked vehicles (ITS). 
Through Vehicular Cloud Computing, cloud computing's 

advantages may be used to vehicle networks (VCC). We propose an 

efficient allocation of computing resources to maximise the long-
term anticipated reward of the VCC system. When determining the 

incentive for the VCC system, both income and expenses, as well as 

fluctuations in resources, are taken into account. An infinite-horizon 
Semi-Markov Decision Process (SMDP) is utilised to solve the 

optimization problem, using the provided state space, action space, 

reward model and distribution of transition probabilities of the VCC 

system as inputs. The best way to describe what has to be done is to 

utilise a state-space iteration technique. Numerically, the dramatic 
improvement in performance may be shown by 

Index Terms—in Vehicular Cloud Computing, Semi Markov 

Decision Process (SMDP) and resource allocation 

INTRODUCTION  

Recent attention has been given to vehicle networks by 

both academics and industry. In order to collect and 

analyse data, cars are equipped with a wide range of 

smart sensors and gadgets [1, 2]. There are a variety of 

wireless technologies available for inter-vehicle 

networking, as well. V2V and V2I communication 

paradigms are the two most common forms of vehicle 

service communication paradigms (V2I) Revisions 

were made in March and May; the manuscript was 

approved on June 13, 2015. IEEE is the copyright 

holder of this work. It is okay to use this content for 

your own personal purposes. This content may only be 

used for educational purposes, and permission must be 

requested by emailing pubs-permission@ieee.org. 

China's National Key Technology R&D Program, 

China's National Science Foundation, and the 

Fundamental Research Funds for Central Universities 

are among the sources of funding for this research 

project (No.2014ZD03-02). Beijing University of 

Posts & Telecommunications, Beijing, China, 100088, 

is home to the Key Lab of Universal Wireless 

Communications, which includes Kan Zheng and 

Hanlin Meng. P.O. Box 141, 57400 Sindos, 

Thessaloniki, Greece, Alexander TEI of Thessaloniki 

(ATEITHE) Department of Informatics. Lei Lei works 

at Beijing Jiaotong University's State Key Laboratory 

of Rail Traffic Control & Safety, Beijing, China, 

100044. At the University of Waterloo in Waterloo, 

Ontario, Canada's Department of Electrical and 

Computer Engineering, Xuemin (Sherman) Shen 

works as a researcher. The 3G1 network of N2L 

companies [3]. A roadside base station, such as a 

DSRC or a cellular network, may be used to link 

automobiles to the Internet through V2I 

communication [4] [5]. Vehicle networks can 

significantly improve transportation security, alleviate 

traffic congestion, and enhance the driving experience 

by allowing the collection and processing of vehicle-

related data [7]. [9] [8] Vehicles equipped with 

significant processing capabilities should be seen as 

service providers rather than service consumers, 

according to the authors [6]. Consequently, a concept 

called Vehicular Cloud Computing (VCC) was 

presented, which combines computing, 

communication and storage resources in VEs (e.g., on-

board computer/communication devices or MUEs) 

carried by passengers. Network-as-a-Service (NaaS), 

storage-as-a-service (StaaS), sensing and computation 

all fall under the umbrella term "Service as a Service" 

in the VCC system, which encompasses all four kinds 

of services mentioned above. [10]. CaaS is the focus 

of this article since cars' computer power is fast 

increasing in order to allow them to serve as suppliers 

of computing services. A layered-cloud computing 

architecture is proposed for the VCC system in this 

study in order to deliver appropriate services for the 

VEs. There is a Remote Cloud (RC) and a Vehicular 
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Cloud (VC) in the proposed architecture, which may 

be seen as a computing capacity supplier in addition to 

the RC. It is possible for the VC to be either mobile or 

static, depending on the mobility of its vehicles. For 

example, a mobile VC is made up of moving vehicles, 

while a static VC is made up of stationary vehicles. Its 

unique properties set it apart from other types of cloud 

computing. One of them is the wide range of 

computing resources accessible in VCs. VC resources 

are time-varying because of the randomness of vehicle 

behaviour, such as cars joining and leaving VCs. A 

VCC system is assumed to have the following 

characteristics, i.e.: 1) service requests per vehicle 

arrive and depart in a random Poisson distribution; 2) 

both the arrivals and departures of vehicles in a VC 

follow the same distribution; and, finally, 3) the 

number of available resources in the VCC is dynamic 

and time-varying. This assumption is made for the 

sake of analysis. Because they are made by various 

companies, automobiles have a wide range of varying 

computational resources. The virtualization approach 

must be developed to abstract and slice diverse 

physical resources into virtual resources shared by 

numerous VEs in the VCC system in order to cope 

with this problem. Virtualized Resource Units are 

assumed in this article for each vehicle in a VC (RUs). 

VCC system resource allocation is the primary 

emphasis of this study, which examines how to 

optimise the long-term projected benefit of the system. 

At some point, the VCC system must decide whether 

or not to execute a service request received from a 

vehicle locally in a VC or to send it on to the RC. To 

add insult to injury, we must also address the problem 

of assigning resources for this service request if it is 

allocated to a virtual machine (VC). Using the VCC 

system, it is hoped that the user would get a reward 

depending on their actions. Both power consumption 

and processing time are taken into account when 

calculating the reward, which is a combination of 

revenue and costs. An infinite horizon Semi-Markov 

Decision Process (SMDP) is used to solve the resource 

allocation issue (SMDP). An analysis of the VCC 

system's state-action-reward model-transition 

probability distribution is performed to identify the 

best strategy for a given state, which dictates the action 

to be conducted. The SMDP-based scheme, or the best 

allocation policy, may be obtained by iteration. The 

SMDP-based allocation scheme outperforms the other 

two allocation schemes, namely the SA and GA 

schemes, in terms of numerical outcomes. The 

remainder of the paper is laid out in this way: An 

overview of the relevant literature is provided in 

Section II. Section III goes into detail on the system 

model for Vehicular Cloud Computing. SMDP 

concept, suggested model, and solution are detailed in 

Section IV of this document. Section V summarises 

the findings in terms of numbers and performance 

metrics. Ending thoughts and ideas for further research 

are included in Section VI. 

II. RELATED WORK 

The VCC has undergone a few upgrades to improve 

the capability of VEs. There are many similarities 

between the VCC and MCC systems, but it also has 

some unique features. Vehicle Cloud Computing 

(VCC) is broken down in [11] into three distinct 

architectural models: the VC, the VuC, and the Hybrid 

Cloud (HC). The formation of VCs capable of 

efficiently dealing with locally generated services and 

enhancing the VEs' experience has also been 

emphasised. [12]. In [13], the Parked Vehicle 

Assistance (PVA) is suggested to overcome 

sparse/unbalanced traffic and considerably increase 

network connection by using the parked automobiles 

as static cloud nodes. It is also used to detect vehicles 

that are not directly in the driver's line-of-sight. [15] 

has investigated a two-tier data centre design that 

makes use of the surplus storage space in parking lots. 

Furthermore, the VCC system's security is the primary 

focus of efforts in [17] and [18]. The VCC has 

undergone a few upgrades to improve the capability of 

VEs. A Mobile Cloud Computing (MCC) system is 

quite similar to VCC, although VCC has additional 

features. Vehicles utilising Clouds (VuCs) and Hybrid 

Clouds (HCs) are the three architectural structures that 

make up the VCC system as described in [11]. 

Furthermore, it has been noted that in order to build 

the VCs, they must be able to successfully deal with 

local services and enhance the experience of VEs [12]. 

It is suggested in [13] to use Parked Vehicle 

Assistance (PVA) as a static cloud node to alleviate 

sparse/unbalanced traffic and boost network 

connection. It is also used to detect vehicles that are 

not directly in the driver's line-of-sight. In [15], a two-

tier data centre design that utilises parking lot storage 

has been investigated. Furthermore, the VCC system's 

security is the primary focus of efforts in [17] and [18]. 

VEHICULAR CLOUD COMPUTING 

SYSTEM 

The system's architecture model VCC systems, like 

the one seen in Fig. 1, often have a dynamic VC. When 

making service requests to the VCC, VEs that function 

like smartphones may take use of the tremendous 

computational capacity available. The VCC system 

assumes that a vehicle has just one fundamental 

computation RU. There are two options available 

when a new request comes in: either the VC (the 

system's primary service provider) accepts or rejects 

it. The VC must decide how many RUs to allot to the 

request depending on the existing availability of 

resources. Alternatively, the RC may be contacted and 

the service request may be transferred to the RC's 

attention. In Fig. 1, an example is also included for 

illustration's purpose. The VC accepts requests from 

VE A and VE B, but VE C's request must be sent to 

the RC. After VE A and VE B have been accepted, 

they are each given three RUs, with VE A receiving 
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three and VE B receiving two. In the VCC system, all 

choices are taken in order to attain the stated goal. It's 

included in Table I, which includes all the most 

relevant points in this work. There are M available 

RUs in the VC, which changes as cars arrive and leave. 

Vehicle capacity is limited by K, which is defined as 

how many cars the VC can accommodate. I RUs may 

be assigned to each arrival service request.

 

Fig. 1 shows a typical VCC system in action. 

For example, NR 6 M. It follows the Poisson 

distribution with p and v for service requests and 

vehicles, respectively. When just one RU is granted, 

the computing service rate is referred to as p. If I RUs 

are assigned, then the service time for a request is 1/ip. 

Vehicle departure rates are sometimes known as v. To 

put it another way, the present epoch may directly 

affect future state, which in turn has a significant effect 

on predicted total reward, due to the dynamic nature 

of service requests and vehicle arrivals. For example, 

when resources are few, it may be imprudent to pursue 

a short-term goal of maximising the present epoch's 

reward. As a result, the goal of this article is to 

effectively allocate resources within the VCC system 

in order to maximise long-term predicted total reward. 

System States 

The present condition of the system indicates the 

number of RUs requested, the resources in the VC that 

are available, and the occurrence of requests and 

vehicles. This means that S may be indicated by S, 

which is the number of service requests that have been 

assigned with ni RUs, and e denotes an event in the 

collection e E = [A, D1, D2,..., DNR]. When a vehicle 

arrives or departs, we write B1 and B1. When a service 

request arrives, we write A. When a request assigned 

with I RUs leaves, we write Di. Consequently, the total 

number of available RUs in the VC is N, which is 

sufficient to meet the requirement of N = 1 + 1 + ni = 

6 M. A further option is to express the number of 

system states (N) with the letter N. Actions The action 

set A in this model has several options for action a, for 

example,

 

 

The following are the specifics on how the revenue 

function works: 1) The system may earn the 

immediate income [wee(El P 1) + wdd(Dl 1/ip 1)] 

when a service request is accepted by the VC. Energy 

and time are saved when the computational work is 

performed in the VC by (El – P) and (Dl–1/i–p) 
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accordingly. There are two prices for energy and time: 

e and d. Various weights, i.e., we and wd, may be pre-

defined based on various reasons, where we + wd = 1. 

As an example, 1 denotes the VCC system's cost of 

receiving a computing job from VEs and transmitting 

the results back. This is especially true because the VC 

has already agreed to take on this assignment, and as a 

result, it just costs P 1 energy and time for the VE to 

send the task and get the reply from it. Transmission 

and reception power are considered to be equal in this 

study [28]. The service time required to complete the 

job is 1/ip if the request is assigned I RUs by the VCC 

system. In the event that there are not enough 

resources in the VC, the service request may be 

forwarded to the RC. As a result, the VCC system 

earns I income at the expense of transfer expenses such 

as 2 and 1. Here, 2 represents the cost of transmitting 

and receiving data from the RC. Revenue I may be 

estimated using [wee(ElP1)+wdd(Dl–1–2)] without 

taking into account the processing time, as the RC is 

considered to have significant computational 

capabilities. Furthermore, because of the long end-to-

end communication latency, the VCC system should 

not transmit the requests to the RC if the resources in 

the VC are adequate. When a service departs or a 

vehicle enters the VCC system, there is no income. No 

income is generated in states where the VCC system 

has spare RUs to distribute when a vehicle departs the 

system. In the event that all the RUs have been used 

up, the VCC system must reimburse the request 

occupying this RU with a fee equal to the RU's value. 

It's because there are no extra RUs in the system that 

can be used to ensure that the request whose RU is 

departing has enough RUs to complete the task The 

next step is to estimate the total cost of the system.

 

where c(s, a) is the cost rate of (s, a) if action an is 

chosen under state s, and (s, a) is the projected service 

time from the current state to the next state. A further 

way to identify c(s, a) is to look at the number of RUs 

used in the VC, which is constrained in terms of 

processing power:

 

SMDP-BASED SCHEME FOR 

VEHICULAR CLOUD COMPUTING 

The action an under state s determines the state 

transition in our study. As an example, take the system 

state (s = (1, 1, 1, M, A)), and the corresponding state 

transition under various actions is provided in Table II 

(see Figure 1). In addition, the likelihood of a state 

change under various actions has a significant impact 

on the optimum strategy. Since we'll be focusing on 

state transition probabilities in this part, we'll begin by 

calculating them. Once the discounted model has been 

implemented, the reward function must be 

reevaluated. Here we provide the optimum policy that 

may be discovered using the value iteration approach. 

Transition Probability 

Using a given state s and an action a, the service time 

between two continuous decision epochs is referred to 

as (s, a). Since the total number of events in the VCC 

system can be stated as, the mean event rate for certain 

s and a values is

 

 

V. NUMERAL RESULTS AND 

ANALYSIS: 

The suggested computation resource allocation 

technique should be evaluated. As a benchmark, we 

compare the suggested allocation scheme's 

performance to that of the following two allocation 

systems: • GA: Greedy Allocation At each epoch of 

decision-making, the VCC system will always assign 

the most RUs possible in order to maximise the system 
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reward. plan to simulataneously anneal The SA 

method is often employed to identify near-optimal 

solutions to optimization issues since it is a typical 

heuristic approach [31]. It is, however, difficult to 

implement owing to the high computational cost of 

obtaining each new policy's objective function value, 

particularly in the case of a large number of system 

states. The SMDP-based technique has a polynomial 

complexity of O(N2) in order to get the best outcomes 

for resource allocation in the VCC system. But the GA 

and SA schemes have complexity of O(N) while the 

complexity of the first two is of order O(N3). Table III 

lists the parameters we employed in our study. It is 

possible to assign a service request 1, 2, or 3 RUs, 

depending on the VC's available resources. The 

maximum number of RUs that may be given to a single 

service request is NR = 3. The arrival rate of service 

requests and cars, as well as the maximum number of 

vehicles K that the VCC system can accommodate, 

may be changed for assessment purposes.. The VCC 

system assigns the request to the VC and provides it 

with 1, 2, and 3 RUs, correspondingly, in cases 1, 2, 

and 3. Case 0 signifies that the VCC system passes the 

request to the RC, whereas the rest of the cases are 

handled by the VCC system itself. There are three 

distinct p values shown in Figures 2, 3 and 4. When 

the number of requests per car is modest, as illustrated 

in Figure 2, the VCC system has enough of resources 

in the

 

 

CONCLUSION AND FUTURE WORK 

 

An infinite horizon Semi-Markov Decision Process 

(SMDP) has been presented for the allocation of 

compute resources in a Vehicular Cloud Computing 

system in this research (SMDP). Decisions are made 

in an iterative manner to optimise the long-term total 

benefit of the VCC system using the iteration 

algorithm. For example, if you compare it to the 

Greedy Allocation (GA) scheme, the expected reward 

performance gains are about 7% when either p or K is 

large. In addition, the SMDP-based plan is less 

complicated than the SA scheme. More robust and 

practical methods may be developed as a result of our 

future research into the impacts of parameter tolerance 
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on the optimum VCC system scheme. Taking into 

mind that a VCC's system size is continually 

increasing, this becomes a more difficult task. In 

addition, the VCC system prefers to distribute as many 

RUs as feasible to the VC when it allocates a single 

request to the system. Because of this, Case 3 has the 

greatest likelihood whereas Case 1 and Case 2 have 

lesser probabilities, and that of Case 0 is the lowest. 

Situations like this tend to shift as more requests arrive 

per car. Decisions are made more cautiously by the 

VCC system since the incentive of allowing a new 

request with only one or two RUs is more appealing. 

Because the VC is now obligated to approve the new 

request, it is no longer prudent to accept a request that 

has three RUs in it. Consequently, the likelihood of 

Case 3 decreases while the likelihood of Cases 1 and 

2 increases. As more requests arrive, the VCC system 

starts to reduce the likelihood of Case 2 by allocating 

just one RU per request. In Fig. 3, the odds of Cases 2 

and 3 grow while those of Cases 0 and 1 drop when 

the arrival rate of cars increases. Due to the fact that 

the VC's resources have a tendency to become 

adequate as vehicle arrival rates rise. Due to the 

abundance of resources, the chance of Case 2 

diminishes when the arrival rate is large. Figure 4 

shows that when the maximum number of cars 

supported by the VCC system increases, the chance of 

Case 3 increasing increases, which is also due to more 

RUs being allotted to the request. In the next section, 

we compare the performance of several VCC systems, 

such as the SA, GA, or SMDP-based systems. As can 

be seen in the graphs in Figures 5, 6, and 7, the total 

predicted reward changes over time. To put it another 

way, when more requests are approved and handled by 

VCs, the predicted total reward of the VCC system 

rises as a result. However, since the likelihood of a 

transfer to the RC increases, the predicted total reward 

decreases when the pace of requests is high. 
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